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Near-infrared (NIR) spectroscopy was used to discriminate between wine vinegar (red or white) and
alcohol vinegar. One orthogonal signal correction method (OSC) was applied on a set of 73 vinegar
NIR spectra from both origins and artificial blends made in the laboratory in order to remove information
unrelated to a specific chemical response (tartaric acid), which was selected due to its high discriminant
ability to differentiate between wine vinegar and alcohol vinegar samples. These corrected NIR spectra,
as well as raw NIR spectra and 14 physicochemical variables, were used to develop separate
classification models using the potential functions method as a class-modeling technique. The
aforementioned models were compared to evaluate the suitability of NIR spectroscopy as a rapid
method for discriminating between vinegar origins. The transformation of vinegar NIR spectra by
means of an orthogonal signal correction method prompted a notable improvement in the specificity
of the constructed classification models. The classification model developed was then applied to
artificial vinegar blends made in the laboratory to test its capacity to recognize adulterated vinegar
samples.
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INTRODUCTION

Near-infrared spectroscopy has gained wide acceptance in
the field of food chemistry mainly due to its suitability for
recording the spectra of solid and liquid samples at a low cost
without any pretreatment and in a nondestructive way. It is also
an easy-to-use, reliable, and versatile analytical method for
determining different compounds in vinegar (1, 2) and wine or
brandy samples (3), as well as in many other food products (4,
5), and for establishing certain considerations with respect to
the elaboration process used (6). This well-known capacity has
been used in this study for classification purposes.

Spanish regulations establish eight vinegar denominations:
wine vinegar, cider vinegar, alcohol vinegar, cereal vinegar, malt
vinegar, honey vinegar, and whey vinegar (7). All of them must
be genuine products. Products derived from blends of final
products or from the fermentation of mixtures of raw materials
are illegal. The results of this study are relevant in the continuous
search for safety within the vinegar industry and in the fight to
curb unfair competition because they offer the possibility of
differentiating different kinds of samples.

The most common fraudulent practice in the elaboration and
commercialization of vinegar is the mixture of different propor-

tions of wine vinegar and alcohol vinegar. These blends are
sold under the denomination of wine vinegar as if they were a
pure product. Another common type of fraud is the addition of
acetic acid of a nonbiological origin to different types of vinegar
in order to comply with vinegar industry regulations. These
adulterated products do not represent any safety risk for human
health, but they constitute a fraud for consumers and are unfair
practices before other vinegar producers.

The first of the adulterations mentioned above can currently
be eliminated thanks to the research initiated by Vallet et al.
and completed later by Remaud et al. (8) and Belton et al. (9)
based on the use of site-specific natural isotope fractionation-
nuclear magnetic resonance (SNIF-NMR). The SNIF-NMR
technique enables the detection of an addition of 5% of synthetic
acetic acid to any vinegar sample, which makes this addition
not profitable for unfair producers. However, one unresolved
problem already comes to the fore: the addition of acetic acid
of biological origin but different from grapes. Some of the
above-mentioned studies also examined these types of mixtures,
mixtures of wine vinegar and alcohol vinegar, but the SNIF-
NMR technique was unable to detect an addition of alcohol
vinegar to wine vinegar when it was below 40-50%; this makes
the fraud still possible and advantageous.

The addition of different proportions of alcohol vinegar to
wine vinegar samples makes the product cheaper, and this unfair
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economical advantage poses an important threat for this sector.
Adulteration is difficult to detect because the addition of alcohol
to the base wine prior to the commencement of the fermentation
process is a common practice in the vinegar industry. The
problem lies in the fact that the botanical origin of the alcohol
is not always well-known. The alcohol added should come from
the fermentation of skins of grapes, but sometimes its origin is
fairly diverse: molasses, sugar beet, or sugar cane.

Some of the physicochemical descriptors commonly used to
characterize both vinegar categories include organic acids
(tartaric,L- andD-malic, lactic, acetic, citric, and succinic acids),
total acids, volatile and nonvolatile acids, ash content, solids,
chloride, and°Brix parameter. Some of them are included in
the Spanish food safety regulations (Reglamentacio´n Técnico
Sanitaria- Technical Health Regulations) and were determined
according to the Spanish official methods (10); the organic acids
were determined by an HPLC method developed and validated
in the laboratory (11). These parameters have traditionally been
used to characterize and classify vinegar from different origins
and processes of elaboration (12-16). The models computed
on these parameters usually allow a good discrimination between
both categories, wine vinegar and alcohol vinegar, and this fact
becomes patently clear in this study.

Nevertheless, despite the good results yielded by these
approaches, it is important to bear in mind that many analytical
reference methods used to determine the significant physico-
chemical descriptors can be fairly elaborate and/or time-
consuming. It would be useful to be able to construct an accurate
classification model from measurements obtained using a proven
method as fast, clean, and inexpensive as, for example, near-
infrared (NIR) spectroscopy has been demonstrated to be. In
fact, during the past decade, one of the most common applica-
tions of NIR spectroscopy combined with pattern recognition
methods has been to discriminate between samples belonging
to one of several distinct groups based on spectral properties
(17-37). Likewise, orthogonal signal correction has been used
for correction of NIR spectra for classification purposes (38),
and the potential of NIR spectroscopy for discriminating
between vinegar from different origins and elaboration processes
has also been investigated with relative success (39). Neverthe-
less, although it has been proven that original NIR spectra of
vinegar samples might be used directly to develop classification
models with good abilities to discriminate between different
origins, the observed values of interclass specificity were not
as high as was hoped to ensure that extreme samples within
each variety were unequivocally classified into the right category
or to avoid potential errors when vinegar blends were used. In
fact, the existence of optical interferences, such as light scatter
in NIR data, always requires indirect multivariate calibration.
Other parameters such as temperature or turbidity should also
be taken into account when liquid samples are used. As a result,
NIR spectra contain not only chemical but also physical
information about samples and measuring conditions, which may
be irrelevant and can mask the chemical information in the
spectra (including information closely related to sample origin),
and might deteriorate classification models developed from raw
NIR spectra. Therefore, the application of a suitable preprocess-
ing method, aimed at minimizing the contribution of physical
effects to NIR spectra and thus enhancing the chemical
information contained, could be seen as an important stage in
model development and improvement.

For all of these reasons, the aim of this study is to explore
the application of NIR spectroscopy for the classification and
detection of adulterated vinegar samples. It offers a real

evaluation of alcohol and wine vinegar commercial samples,
qualities, and diversity within each category. The potential
functions method was selected as a class-modeling technique
for this study, because it is a powerful method with certain
specific features that enable a very comprehensive analysis of
both numerical and graphical results to be performed. In this
way, as an attempt to improve the classification models
constructed on the basis of original vinegar NIR spectra, an
orthogonal signal correction method (OSC) was applied on these
raw spectra to remove information not related to a specific
chemical response with a high modeling power to discriminate
between vinegar origins. This specific descriptor was selected
from among 14 physicochemical parameters according to their
discriminant ability after the application of SIMCA. To evaluate
the effect of the orthogonal corrections on sample classification,
the results obtained before and after the transformation of the
spectra were analyzed and compared.

MATERIALS AND METHODS

Instrumentation and Software. NIR spectra were collected for the
1100-2500 nm range using a FOSS NIRSystem 5000 liquid analyzer
spectrometer (Foss NIRSystems, Silver Spring, MD) equipped with a
flow cell. The instrument was controlled by a compatible PC using
Vision 2.22 (Foss NIRSystems) for data acquisition.

For high-performance liquid chromatography (HPLC) measurements,
a modular apparatus comprising a complete HP 1100 series system
with a vacuum degasser, a quaternary pump, an autosampler, a
thermostatic column compartment, and a diode array detector was used.

For regulatory analyses (Reglamentacio´n Técnico Sanitaria -
Technical Health Regulations), an oven (P Selecta), a furnace, a pH
electrode (Crison, micropH 2002, Barcelona, Spain), and a Cl- ion-
selective electrode (Crison, Alella, Barcelona, Spain) were used.

For °Brix measurements an Atago hand refractometer model ATC-1
with measurement range of°Brix 0-32%, accuracy of(0.2%, and an
automatic temperature compensation system from 5 to 35°C was used.

Chemometric analysis was performed using the following software
packages: Unscrambler v 8.0 (40), MATLAB 6.5 (41), and V-PARVUS
package (version 2004) (42).

Samples.Thirty-nine vinegar samples (33 wine vinegar and 6 alcohol
vinegar samples) were collected from a local vinegar industry and
several supermarkets in northern Spain. All of the samples were well-
labeled and claimed to be genuine products even if we can ensure only
the authenticity of those samples coming from the local producer. The
great difference in size of the two categories corresponds to the real
differences of the different vinegar origins in the Spanish market. Thirty-
four blends of wine vinegar and alcohol vinegar were prepared in the
laboratory by adding 15, 30, 50, and 70% (v/v) of alcohol vinegar to
nine wine vinegar samples randomly selected from the initial wine
vinegar samples, covering the whole space defined by the two first
principal components. Only two of the mixtures could be done from
one of the wine vinegar samples due to the small amount of sample
available. For this sample, the mixtures prepared were those corre-
sponding to 30 and 70% of alcohol vinegar.Table 1 shows the mean,
standard deviation (SD), and maximum and minimum values of the
physicochemical parameters of both sets of vinegar samples. One
noteworthy feature was the wide range of some of the descriptors.

Spectroscopy Measurements.NIR spectra were recorded at 43.0
( 0.1 °C. The samples were heated to this temperature before being
introduced in the NIRSystem in order to take NIR spectra. Each
spectrum is based on an average of 32 scans at 2 nm intervals within
the wavelength range of 1100-2500 nm. Three replicates of each
sample were taken, and the mean value was calculated.Figure 1 shows
the original NIR spectra of the samples collected. The spectral data
were taken from the Vision 2.22 software and treated using Unscrambler
v 8.0. Two segments of the spectrum were removed: the first, from
1880 to 2080 nm, due to the saturation of the spectrum caused by the
strong combination band of O-H from water (1950 nm); and the
second, from 2300 to 2500 nm, because of the low signal/noise ratio

7712 J. Agric. Food Chem., Vol. 52, No. 25, 2004 Sáiz-Abajo et al.



value. The mean values were exported for further mathematical
preprocessing and class-modeling step.

Reference Analysis.Regulatory analyses (total acids, volatile and
nonvolatile acids, solids and ash contents) were analyzed in accordance
with the Official Methods of Analysisfor vinegars (10).

Chloride was determined by direct potentiometric determination with
a Cl- ion-selective electrode as a practical application of the Nernst
equation. It is based on the use of small quantities of both sample and
standard and the generation of a standard curve by serial addition.

The Brix (%) parameter shows the concentration percentage of the
soluble solids content in a sample (water solution). Soluble solids
content is the total of all the solids dissolved in the water, including
sugar, salts, protein, acids, etc., and the measurement reading is the
total sum of these. Basically, Brix (%) is calibrated to the number of
grams of cane sugar contained in 100 g of cane sugar solution. Hence,
when a vinegar sample is measured, Brix (%) represents the “sugar
equivalents” in the vinegar sample.

Organic acids were determined by HPLC with a DAD detector. All
of the standard solutions and vinegar samples were passed through a
0.7 µm glass microfiber GF/F supplied by Whatman (Whatman
International Ltd., Maidstone, U.K.) prior to injection into the HPLC
system. The column used was a Zorbax SB-C18 with a stable bond
packaging suitable for working at low pH values. The mobile phase
was 0.009 M potassium dihydrogen phosphate (adjusted to pH 2.06
with phosphoric acid)/methanol (92:8 v/v) at a flow rate of 0.64 mL
min-1 at 25 °C and a working pressure of 90 bar (1 bar) 105 Pa).
Detection was performed by measuring UV absorption at 210 nm. This
chromatographic method was developed and optimized in the laboratory

using experimental design and desirability functions as a multicriteria-
decision-making method for the separation, determination, and quan-
tification of these compounds (11).

Chemometrics and Data Analysis.The whole data matrix had 73
objects, 498 spectral variables (NIR absorbance values), and 14
physicochemical variables. The initial set of 73 objects was divided
into two sets: the training set used to construct the classification models
and the external test set used to test the models and express the
prediction capacity of the computed models. The objects assigned to
the external test set were randomly selected covering the experimental
domain from the initial set of 73 samples and accounted for 13.7% of
the total number of samples.

The pretreatment method applied to the data was orthogonal signal
correction (OSC). OSC was applied to avoid all of the effects and
interferences in the response that presented zero correlation with the
reference valuey (43-45). Since the introduction of OSC, a number
of different approaches that have attempted to improve or modify this
have been presented in the literature (46-48). In the present study,
the original method proposed by Wold (43) and implemented in the
osccalfunction of the PLS Matlab toolbox was used (49).

Two class-modeling techniques were used in the study: SIMCA
and the potential functions method. SIMCA was the first class-modeling
technique introduced in chemistry by Svante Wold (50). SIMCA does
not make any hypothesis on the distribution of variables; each category
model is developed independently, and no information in the external
categories is used. The mathematical model of the category is based
on the principal components of the category; these are normally obtained
as eigenvectors of the correlation coefficient matrix of the category,
that is., by using the data after separate category autoscaling or column
centering as in our case.

Potential functions methods are classification and modeling methods
when there is no normal data distribution. Rather than estimating the
probability density function using parameters such as mean and standard
deviation, these methods use the local density of the objects in the
training set; these objects are then used to compute the probability
density. The probability function is computed as the sum of individual
contributions of the objects in the training set. Consequently, these
methods are known as potential functions techniques (51). The
individual contribution can have different shapes, a Gaussian function
being one of the most commonly used. Each Gaussian function contains
a smoothing parameteru that determines how broad the individual
contribution is. The probability distribution function in a pointx is the
sum of the individual contributions, and the selection of the smoothing
parameter is performed by a cross-optimization procedure (e.g., leave-
one-out) (52). In the case of multivariate data, the individual potential
in one pointx must take into account theV variables. The smoothing
parameter is substituted by the product of the smoothing factork for
the standard deviation of each variable, so only the parameterk is
optimized. When several categories are studied, as in the present case,
the smoothing factor is computed for each category (52).

Table 1. Mean, Standard Deviation, and Extreme Values of the Physicochemical Parameters for Wine and Alcohol Vinegar Samples

wine vinegars alcohol vinegars

variable mean SD max min mean SD max min

tartaric acid (g L-1) 0.675 0.281 1.576 0.265 nda nda nda

L-malic acic (g L-1) 0.442 0.249 1.081 0.130 0.029 0.029 nqb

lactic acid (g L-1) 0.684 0.292 1.606 0.139 nqb nqb nda

acetic acid (g L-1) 59.750 0.864 62.313 57.804 60.095 0.142 60.235 59.950
citric acid (g L-1) 0.313 0.293 1.534 0.015 nda nda nda

succinic acid (g L-1) 0.569 0.333 1.619 0.180 0.054 0.054 nda

D-malic acid (g L-1) 0.635 0.789 3.292 0.021 0.012 0.012 nqb

total acids (°) 6.087 0.088 6.304 5.923 6.118 0.076 6.182 6.033
nonvolatile acids (°) 0.091 0.036 0.183 0.033 0.006 0.002 0.008 0.003
volatile acids (°) 5.996 0.083 6.215 5.823 6.112 0.078 6.178 6.026
solids (g L-1) 9.786 2.168 17.407 4.535 0.871 0.311 1.220 0.625
ash (g L-1) 1.772 0.429 3.067 0.900 0.399 0.239 0.673 0.230
chloride (g L-1 NaCl) 0.257 0.180 0.839 0.051 0.040 0.036 0.081 0.016
°Brix (%) 4.19 0.23 5.00 3.80 3.37 0.06 3.40 3.30

a nd, not detectable, values under the detection limit. b nq, not quantifiable, values under the quantification limit.

Figure 1. Raw NIR spectra of the wine and alcohol vinegar samples.
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Since the appearance of potential functions as a classification method
in analytical chemistry (1950s), several classification methods and
clustering procedures have been developed based on that method (53,
54), also being applied for more than simply classification purposes,
such as selecting representative subsets of samples (52).

Usually, the class-modeling technique based on potential functions
applied in this study validates the predictive ability of classification
models constructed by cross-validation, because when one is working
with potential functions the waste of objects to make up an external
evaluation set is not recommended. However, it is known that
orthogonal signal correction methods can produce a notable overfitting
when applied on the spectra forming the training set. For this reason,
although all potential functions classification models were constructed
by cross-validation, we decided to also validate the actual predictive
abilities of resulting models by testing their performance on an external
test set, simply to control and avoid a possible overfitting that could
inherently appear due to the orthogonal signal correction method
applied. Hence, the results are expressed as correct classification results
in calibration, validation by cross-validation, and validation by external
test set. The complexity of the models in all cases was chosen according
to the results obtained in the cross-validation process. The models
performed were then tested on the external test set.

The quality of the results provided by the different class models
constructed was compared according to the following evaluation
parameters:

Category classification/prediction rate

This equation was applied both in classification and in prediction, where
mcc is the correct classification number andN the total classification
or prediction number that corresponds to the total number of objects
in a categoryC (during cross-validation an object is classified many
times).

McNemar’s testwas used to evaluate the significance of the results
obtained by the different class models. When two models, A and B,
were compared, McNemar’s value is calculated as

wheren01 is the number of samples misclassified only by algorithm A
andn10 is the number of samples misclassified only by algorithm B.
McNemars’s test (55) is a particular case of Fisher’s test (56). The
aim is to have a statistical procedure to decide if two methods have
the same accuracy. Two algorithms, A and B, are trained and validated
with the same sets. The null hypothesis is that the two algorithms A
and B have the same error rate, which means that they have the same
percentage of well-predicted samples (57, 58). McNemar’s test is based
on aø2 test with one degree of freedom (if the number of samples is
>20). The critical value with a 5% level of significance (ø(1,0.95)

2) is
3.84. If McNemar’s value is greater than this value, the null hypothesis
is false and the two algorithms are significantly different. In the present
work, McNemar’s test was applied to both calibration and test sets
jointly due to the reduced number of samples in the test set. In the
final part of the potential functions program all of the models are tested
on the whole data set and given a value of “accepted” or “rejected” for
each of the class models computed. This information was used to
perform McNemar’s test.

Graphical tools, such as isopotential lines and Coomans plots, were
also used to analyze the goodness of the models.

RESULTS AND DISCUSSION

Original NIR Spectra. In the first part of the study only the
two “pure” categories (wine and alcohol vinegar) were consid-
ered, accounting for 39 samples that have been divided at
random into training and test sets.

Table 2 summarizes the classification and prediction percent-
ages corresponding to the class models developed on the basis
of mean-centered original NIR spectra of vinegar samples using
the potential functions method with two principal components
(PCs) for the two-class problem analyzed. Two PCs were used
to compute the model to reach the maximum correct classifica-
tion rates in the cross-validation process, accounting for the 73%
of the explained variance of the system. The results can also be
expressed in terms of sensitivity and specificity. Sensitivity is
the proportion of objects belonging to a category that are
correctly identified by the mathematical model; specificity is
the proportion of objects foreign to the category that are
classified as foreign.Table 3 shows the sensitivity and
specificity for the two categories studied. The specificity of the
model of category 1 for category 2 is 0.0%, which means that
none of the objects of the second category are classified as
foreign. These two parameters (sensitivity and specificity) are
also significant because it is important not only that one model
accepts samples belonging to the category but also that the
model rejects samples belonging to other categories.

These numerical results can be also confirmed graphically.
Figure 2a shows the Coomans plot corresponding to the
classification model constructed from raw NIR spectra with
complexities of two PCs. Bearing in mind the categories studied
here, the bottom right zone corresponds to the samples accepted
by the alcohol vinegar class model, whereas the upper left zone
corresponds to wine vinegar samples. Wine vinegar samples
are represented by a circle and alcohol vinegar samples by a
triangle, and the objects in the external test set are plotted as a
cross. The large number of samples displayed in the uncertainty

RC )
mcc

NC
× 100 (1)

McNemar’s value)
(|n01 - n10| - 1)2

n01 + n10
(2)

Table 2. Calibration and Prediction Classification Rates for the
Potential Functions Models Computed on the Diverse Variables
(Physicochemical or NIR) for Wine and Alcohol Vinegar Categoriesa

1 (wine vinegar) 2 (alcohol vinegar)

category
com-
puted CVb

external
test set

com-
puted CVb

external
test set

raw NIR variables 92.3 92.31 85.7 40.0 60.0 0.0
OSC1(tartaric) 100.0 100.0 85.7 100.0 100.0 100.0
OSC2(tartaric) 100.0 100.0 85.7 100.0 100.0 100.0
OSC3(tartaric) 100.0 100.0 71.4 100.0 100.0 100.0
14 physicochemical

variables
100.0 100.0 100.0 100.0 100.0 100.0

tartaric acid 100.0 100.0 100.0 100.0 80.0 100.0

a Results expressed as percentage of correct classification. b CV, results in cross-
validation.

Table 3. Sensitivity and Specificity Values for the Potential Functions
Models Computed for Categories 1 (Wine Vinegar) and 2 (Alcohol
Vinegar)a

1 (wine vinegar) 2 (alcohol vinegar)

category sensitivity
specificity
for class 2 sensitivity

specificity
for class 1

raw NIR variables 92.3 0.0 100.0 61.5
OSC1(tartaric) 96.2 40.0 100.0 100.0
OSC2(tartaric) 92.3 100.0 100.0 100.0
OSC3(tartaric) 92.3 100.0 100.0 100.0
14 physicochemical

variables
96.2 100.0 100.0 100.0

tartaric acid 96.2 100.0 80.0 100.0

a Results expressed as percentage: for sensitivity, the percentage of objects
correctly identified by the mathematical model; for specificity, the proportion of
objects not belonging to a category and classified as foreign.
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area belonging to both models demonstrates the low degree of
specificity of these models; all of the samples belonging to the
alcohol vinegar category are in this area. The potential functions
method also enabled us to obtain potentials for contour plots
(isolines), taking into account all the objects and categories,
which was very useful as a visualizing method.Figure 2b shows
the isopotential lines plot corresponding to the potential func-
tions model of both wine vinegar (circles) and alcohol vinegar
(triangles) categories. As can be seen, class models relating to
both vinegar categories did not appear perfectly separate,
showing a high degree of overlapping.

In view of the numerical and graphical results provided by
the optimal classification model developed from raw NIR
spectra, several remarks should be made. The discrimination
ability exhibited by the selected model cannot be considered to
be satisfactory for classifying vinegar from two different
originsswine and alcohol. The relatively short distance between
the class models (exhibited in the Coomans plot and confirmed
by the clear overlapping between isopotential lines) could reveal
some potential problems for classification of extreme samples
within each category or blends of varieties in the future. This
finding underscores the importance of the objectives pursued
by the present study, that is, trying to improve the final
classification model in terms of both specificity and sensitivity
to enable a more accurate practical application.

Chemical Variables: Selection of a Discriminant Descrip-
tor. After the relative specificity problems exhibited by the
previous models constructed on the basis of the raw NIR spectra,
new studies were performed on 14 physicochemical variables
to determine the potential ability for discriminating between the
categories. These variables included the common parameters
included in the Technical Health Regulations and the organic
acids and°Brix parameter related to the carbohydrate content.
As a first attempt, SIMCA was performed over the two vinegar
categories (wine vinegar and alcohol vinegar) and the 14
physicochemical variables, the main objective being to deter-
mine the modeling power and the discriminating power of each
variable. The variables total acids and nonvolatile and volatile
acids achieved the higher modeling power for category 1 (wine
vinegar), whereas solids and volatile acids were the variables
with higher modeling values for category 2 (alcohol vinegar).
With reference to discriminating power, tartaric acid proved to
be the most discriminatory variable, followed by citric acid.
The other 12 variables displayed less discriminating power
between the categories.

The fact that tartaric acid is the most discriminating descriptor
was reasonable. Tartaric acid originally comes from grapes, and
this is the main reason this variable discriminates between these
two vinegar categories. A number of hypotheses can be proposed
with regard to tartaric acid content in wine vinegar samples.
Tartaric acid ranged from 1.576 to 0.265 g L-1 in the
commercial wine vinegar studied. Normally, the tartaric acid
content in wines of 11-14 alcoholic grades is variable, ranging
from 3 to 1.2 g L-1 (59, 60). Considering that the normal base
wine used in the vinegar industry has an average of nine
alcoholic grades and considering all of the dilution processes
during vinegar elaboration, a normal expected range for tartaric
acid in wine vinegar would be 0.45-1.15 g L-1. Low values
of tartaric acid content are indicative of an extra dilution process
or any adulteration process.

Again, the potential functions method was used to compute
the classification models for both vinegar categories on the basis
of these 14 physicochemical descriptors, and the classification
results in calibration and prediction are shown inTable 2.Table
3 shows the sensitivity and specificity results. From the results
in the tables it can be observed that the models constructed on
the physicochemical variables are able to neatly separate both
categories. The same good results are obtained when the class
models are computed over the most discriminant variable,
tartaric acid (seeTables 2 and 3).These results confirm the
suitability of the tartaric acid as discriminant variable.

Corrected NIR Spectra. OSC was applied to the original
NIR data, removing one, two, and three orthogonal factors
(latent variables, PCs, or components in general) unrelated to
the tartaric acid content. The corrected spectra were then used
to construct the respective potential functions class models. The
results, expressed as correct classification and prediction
percentages, are shown inTable 2. The complexities of the
models were two in all cases and accounted for 50.6, 63.5, and
66.2% of explained variance, respectively, when one, two, or
three orthogonal components have been removed.

Considering the spectra corrected by OSC, it can be seen
that, after removal of two orthogonal components, the results
in terms of classification and prediction, as well as selectivity
and specificity, were excellent. The removal of three orthogonal
components generated a slight overfitting because the percentage
of correct classification in prediction for the test set for category
1 was slightly lower than the results obtained for two orthogonal
components. These numerical results were visually confirmed
by Coomans and isopotential lines plots.Figure 3 shows the

Figure 2. (a) Coomans plot and (b) isopotential lines plot of the class-models constructed over the mean-centered raw NIR data: (O) wine vinegar; (4)
alcohol vinegar; (×) test set.
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Coomans plot and the isopotential lines plot for the model
computed on the OSC-corrected NIR variables once two
orthogonal components have been eliminated.Table 3 shows
a high degree of interclass specificity, sensitivity, and a patently
clear separation between classes, similar to that obtained when
using tartaric acid content as a discriminating descriptor and
considerably improved with regard to the model constructed
from raw spectra.

The significance of the differences can be statistically studied
by McNemar’s test. InTable 4are given the McNemar’s values
for the different approaches performed. Note that all of the
methods computed on the OSC-corrected variables and the
physicochemical variables are significantly different from the

method computed on the raw NIR spectra. However, the OSC-
corrected methods with one, two, or three components and the
methods based on the physicochemical variables are not
significantly different.

Blends. At this point, the several artificial blends of wine
and alcohol vinegars with 15-70% adulteration in percentage
(v/v) of alcohol vinegar prepared in the laboratory are added to
the data of the two “pure” categories. The potential function
models were computed on a system of three categories. The
results are presented according to the calibration and prediction
rates for the three categories: wine vinegar, alcohol vinegar,
and blends. Panelsa andb, respectively, ofFigure 4 show the
Coomans plot and the isopotential lines plot including the blends
of both vinegar origins. The axes of the Coomans plot represent
the categories of alcohol vinegar (triangles) and blends (squares)
so that the upper right quadrant corresponds to the samples
rejected by the two models represented. Thus, in this case, the
samples that should be in this quadrant are the genuine wine
vinegar samples (circles). As in the previous case, the samples
included in the external test set are represented by a cross. The
isopotential lines plot shows that a strong overlapping between
the three categories was obtained. In this case five components
are needed to get the best classification rate explaining 88.8%
of the variance of the system.

Better results were obtained after the OSC correction taking
into account the tartaric acid content in the samples had been

Figure 3. (a) Coomans plot and (b) isopotential lines plot of the class-models constructed over the OSC-corrected NIR spectra after elimination of two
orthogonal components: (O) wine vinegar; (4) alcohol vinegar; (×) test set.

Figure 4. (a) Coomans plot and (b) isopotential lines plot of the class-models constructed over the mean-centered raw NIR spectra of wine vinegar,
alcohol vinegar, and blends: (O) wine vinegar; (4) alcohol vinegar; (0) blends; (×) test set.

Table 4. Comparison of the Different Potential Functions Methods with
McNemar’s Testa

McNemar’s
value

raw NIR
variables

OSC1-
(tartaric)

OSC2-
(tartaric)

OSC3-
(tartaric)

14
variables

tartaric
acid

raw NIR variables 13.07 15.06 12.50 15.42 16.06
OSC1(tartaric) 0.25 0 1.50 1.33
OSC2(tartaric) 0 0.25 0
OSC3(tartaric) 0.80 0.25
14 variables 0
tartaric acid

a Two categories were studied, wine and alcohol vinegar. Boldface numbers
indicate that the two methods are significantly different.
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performed. The potential functions model was computed by
considering three categories: wine vinegar, alcohol vinegar, and
blends. The data were column-centered separately by category.
Table 5shows the classification rates obtained after the potential
functions method had been applied to the three categories
studied. The sensitivities and specificities results were also
considered to choose the method obtained by the removal of
two orthogonal components as the best classification strategy.
Five components accounting for 86.4% of the explained variance
were needed to obtain good classification results. The Coomans
plot in Figure 5a shows a better separation between categories
2 (alcohol vinegar) and 3 (blends), but some blend samples
rejected by the represented model and mixed with the wine
vinegar samples can still be seen. This can be verified inFigure
5b, where the alcohol samples can be well-distinguished from
the other samples, although wine vinegar samples and blends
still overlap despite the fact that two clusters can be distin-
guished, one for wine vinegar and another for blends. The reason
for this impossibility of neatly distinguishing between com-
mercial wine vinegar and blends of wine and alcohol vinegar
is the wide range of concentration presented by the descriptor
tartaric acid in both groups of samples. Extreme samples of
both categories, wine vinegar and blends, are mixed up. This is
significant of the quality and genuineness of the commercial
wine vinegar samples and opens up a new area of research in
the study and quantification of vinegar adulteration. Besides, it
should be stated that the blends made in the laboratory contain
some of the same chemical variability as the samples used to
compute the class models. This fact added to the hypothesis of
considering the commercial samples genuine, makes of this work
a feasibility study and not an absolute methodology to determine
fraudulent vinegar samples. Further studies are being carried
out on this.

Again, inTable 6are presented McNemar’s values computed
on the whole data set. In this case, the differences between the
models performed on OSC-corrected NIR variables eliminating
one or two orthogonal components are significantly different
from the models performed on the original NIR variables.
However, OSC correction removing three orthogonal compo-
nents results in a model not significantly different from the
original one. The differences between OSC1(tartaric) and OSC2-
(tartaric) approaches are significant, as are the differences
between OSC2(tartaric) and OSC3(tartaric). Note that the
McNemar’s value when the original method (raw NIR variables)
and the OSC1(tartaric) method are compared is close to the
critical value of 3.84; the comparison between OSC1(tartaric)
and OSC3(tartaric) is not significant, so it can be concluded
that the OSC2(tartaric) method yields the best results, being
significantly different from the original model.

Conclusions.This study has shown that the transformation
of vinegar NIR spectra using an orthogonal signal correction
method, taking into account in this correction a chemical
response closely related to sample origin, prompted a substantial
improvement in the quality of the constructed classification

Table 5. Calibration and Prediction Classification Rates for the Potential Functions Models Computed over Three Categories: Wine Vinegar (1),
Alcohol Vinegar (2), and Blends of the Previous Two (3)a

1 (wine vinegar) 2 (alcohol vinegar) 3 (blends)

category computed CVb
external
test set computed CVb

external
test set computed CVb

external
test set

NIR variables 100.0 96.2 100.0 80.0 60.0 0.0 93.8 93.8 100.0
OSC1(tartaric) 100.0 96.2 85.7 100.0 80.0 0.0 96.9 93.8 100.0
OSC2(tartaric) 96.2 100.0 85.7 100.0 60.0 0.0 96.9 96.9 100.0
OSC3(tartaric) 92.3 92.3 85.7 80.0 60.0 0.0 96.9 96.9 100.0

a Results expressed as percentage of correct classification. b CV, results in cross-validation.

Figure 5. (a) Coomans plot and (b) isopotential lines plot of the class-models constructed over the OSC-corrected NIR spectra (two OSC components)
of wine vinegar, alcohol vinegar, and blends: (O) wine vinegar; (4) alcohol vinegar; (0) blends; (×) test set.

Table 6. Comparison of the Different Potential Functions Methods with
McNemar’s Test

McNemar’s
value

raw NIR
variables

OSC1-
(tartaric)

OSC2-
(tartaric)

OSC3-
(tartaric)

raw NIR variables 4.32 15.61 1.64
OSC1(tartaric) 5.88 0.19
OSC2(tartaric) 7.68
OSC3(tartaric)

a Three categories were studied: wine vinegar, alcohol vinegar, and blends.
Boldface numbers indicate that the two methods are significantly different.
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models in comparison with the model developed on the basis
of original spectra. The correction of NIR spectra based on the
tartaric acid content provides better discrimination between wine
vinegar and alcohol vinegar and good results in terms of both
classification/prediction ability and stability.

On the other hand, it is important to clarify that the strategy
introduced would not imply any additional effort in relation to
analytical determinations in future samples to be characterized.
The measurement of tartaric acid content values was required
only for samples forming part of the calibration set. Once
calibration NIR spectra have been corrected by applying the
orthogonal signal correction method, the same correction can
be directly applied to future sample spectra without the need to
measure any reference tartaric acid content value. In this way,
from a practical application standpoint, the classification
methodology proposed would rely only on NIR measurements.
Therefore, in view of the results obtained, it could be stated
that the advantages offered by the improved classification
models in terms of both specificity and reliability compensate
for the need to measure an extra chemical property (tartaric acid)
in the case of the calibration samples.

When the method developed was applied to blends of wine
and alcohol vinegars, three clusters were observed. These results
can be indicative of the quality of commercial wine vinegar
samples used in the calibration set to construct the class models.
This study presents a feasibility study for the identification of
adulterated vinegar samples.

The promising results obtained in this study mean that a
similar procedure could be considered in future applications to
quantify different blends of varieties to identify and determine
the percentage of adulteration in fraudulent mixtures.
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